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Abstract. The practical importance of the leakage phenomenon of a liquid into a vessel is
emphasized. The physics of the same is theoretically elucidated by incorporating the Young–
Dupre relation, the Gibbs inequality, Poiseuille’s flow, and the conditions for hydrostatic
equilibrium.

1. Introduction

Capillarity phenomena are of great importance in physical, chemical, biological, and
engineering sciences [1–4]. Of particular interest are the leakage of liquids into a vessel
from outside, and the leakage in the reverse direction. Common examples are the supply
of liquid fuels to automobile engines through the carburettor, the leakage of sea water
into the hulls of vessels through minute cracks, passage of liquid metals into fine gaps for
welding works, injection of lubricants into machine joints, sucking of ink through pores
in blotting papers, forging of molten plastics into specific shapes by passage through fine
pores, the cooling of water through the evaporation of leaked water in earthen pots kept in
hot climates, the passage of sweat through the pores of human skin, the penetration of hot
oil into foodstuffs during frying, the leakage of ink from fountain pens and ballpoints, etc.
The physics of the leakage phenomenon into a vessel is somewhat different from that in the
reverse direction and, in the present paper, we focus our attention on the former.

The basic physical principle involved in the process of leakage of a liquid into a vessel
from outside is ‘capillarity in a tube of insufficient length’. To be more specific, we recall
that standard text-books [5, 6] quote the expression for the rise of a liquid in a capillary
tube as

H0 = a + 2Tlv cosθ0/rρg (1)

whereH0 is the equilibrium height of the risen column measured from the lower tip of the
tube,a is the depth of immersion of the lower tip below the free surface,ρ the density of
the liquid, r the inner radius of the tube,g the acceleration due to gravity,Tlv the surface
tension of the liquid–vapour interface, andθ0 (< π/2) is the Young–Dupre contact angle
[7, 8]. It is assumed here that the tube is ‘sufficiently long’, i.e.,L > H0 whereL is the
actual length of the capillary tube. However, the case of a tube having ‘insufficient length’,
i.e., L < H0 (hereafter referred to as a short capillary), has not been treated in the literature
[6, 9, 10] to the extent which it deserves. Not only is this problem of conceptual interest
but it also has important practical applications as discussed in the first paragraph.
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In section 2 we recapitulate the Young–Dupre relation which defines the contact angle
θ0 at the junction of a solid, and a liquid and its vapour interfaces and also mention
the Gibbs inequality [11, 12] obeyed by the contact angle when the triple line is pinned
at a sharp edge. In section 3 we use the Poiseuille–Peiris–Tennakone [13] formula to
calculate the instantaneous speed of the rising column. The energetics of motion of the
liquid head as it overshoots the upper tip and its final equilibrium configuration, if any,
will be discussed in section 4. In the same section we describe a nice application of these
ideas to the leakage of water into a vessel whose bottom has developed a pin-hole crack.
Since our emphasis in the present paper is on the applicational aspects of leakage, subtle
conceptual/mathematical refinements on the dynamical features of capillarity will not be
incorporated. Theses refinements arise due to heterogeneities of the solid surface leading
to contact angle hysteresis [14] and the dependence of the contact angle on the velocity of
the moving column [15].

2. Young–Dupre expression and Gibbs inequality

The formulation of the problem at hand may be conveniently made in terms of the interplay
among the adhesive forceA and the tensionsTlv, Tsv andTsl of the liquid–vapour, solid–
vapour and solid–liquid interfaces, respectively. For the sake of ready reference, let us
recapitulate the conditions for these forces to be in equilibrium. Figure 1(a) shows these
forces acting on a small element of the liquid situated at the junction of the three phases
and having unit length perpendicular to the plane of the diagram. Resolving these forces
parallel and perpendicular to the solid surface, one finds that the said element will be in
equilibrium if

A = Tlv sinθ0 (2a)

Tlv cosθ0 = Tsv − Tsl (2b)

whereθ0 is the equilibrium contact angle. These are the celebrated Young–Dupre relations
[8] and some of their well known properties are as follows. (2a) yields the value of the
adhesive force while (2b) may be regarded as defining the equilibrium contact angle in terms
of Tsl , Tsv andTlv. The interfacial films are generally a few micrometers thick. Clearly, as
long as the interfaces have a finite area the contact angle is acute,π/2, or obtuse whenTsv

is greater than, equal to, or less thanTsl . Of course, in the case of the tap water–ordinary
glass systemθ0 is acute, nearly 18◦ at room temperature [6].

Very near the upper tip of the tube, due to geometrical considerations, an exceptional
case may arise because the three-phase contact line now meets a mathematically sharp
solid edge. The equilibrium condition on the contact angle is expressed by the following
inequality due to Gibbs [11, 12]:

θ0 6 θ 6 (180◦ − φ) + θ0 (2c)

whereφ is the angle subtended by the two surfaces forming the solid edge. In the case of
the upper tip of our capillary tubeφ = 90◦, implying that, although the lower limit of the
inequality remains acute, the upper limit becomes obtuse.

The methods of measuringTlv are well known [5]; however, those of determiningTsl and
Tsv are more subtle. For example, in the case of the mica–water–vapour system one employs
the following cleavage technique [16]. The basic principle involved is the determination of
the work done to cleave a thin strip of mica by measuring the forces required to maintain a
given separations of the ends of the mica strip. High-resolution multiple-beam interference
fringes are used to locate the line of bifuration of the mica sheets and, hence, to determine
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Figure 1. (a) A diagram showing the forcesA, Tlv , Tsv , andTsl acting on a small element of
the fluid situated at the junction of the interfacial films. (b) A diagram showing a capillary tube
dipped vertically into a liquid with its lower end at deptha below the free surface. The contact
angleθ0 and the time-dependent risez are marked.

the area of new interface formed during the cleavage process. The apparatus, fitted with
a sensitive hygrometer, is so arranged that both sample and cleavage mechanism can be
completely surrounded by the liquid or vapour under examination. Hence, it becomes
possible to measure solid–vapour and solid–liquid interfacial energies directly. Typical
values of interfacial tensions for the case of water and hexane with mica as the solid are
reported in table 1.

Table 1. Parameters in the Young equation (dyne cm−1) at room temperature [16]. Here the
solid (s) is mica.

Liquid Tsv Tsl Tlv

Water 182.8 107.3 72.8
Hexane 271 255 18.4

Apart from the above-mentioned facts about the contact angle and interfacial tensions
the final equilibrium configuration of the liquid head after crossing the upper tip also depends
crucially on the speed of the rising column, to which we turn in the next section.

3. The speed of the rising column

Suppose a short capillary of lengthL < H0 is dipped vertically in a liquid of viscosityη
as shown in figure 1(b). Let z denote the height of the liquid column measured from the
lower tip at time t , and ż ≡ dz/dt denote its speed. A solution to the hydrodynamical
problem of capillary motion under the simultaneous influence of surface tension, gravity,
and viscosity was attempted by the present authors [17] in 1987 using the Newtons’ law for
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a variable mass system coupled with anad hoc assumption about the velocity gradient at
the wall of the tube. However, since the assumption of the no-slip condition at the wall is
more appropriate, one may prefer to employ the Poiseuille formula for the velocity as was
done by Peiris and Tennakone [13]. In our notation their formula reads

ż = (ρgH0r
2/8η)[1/z − 1/H0]. (3)

Furthermore, in Poiseuille’s theory the kinetic energy when the liquid column reaches the
top is given by

Ekin = 1
2πr2Lż2

topρ. (4)

Of course, atz = 0 the formula (3) is inapplicable because the correct initial speed in
accordance with the Torricelli theorem should be(2gH0)

1/2. However, very soon the
deceleration of the column becomes negligible so (3) starts operating. Numerically, for the
case of the tap water–ordinary glass system the relevant typical parameters are as follows:

ρ = 1 g cm−3 θ0 = 18◦ φ = 90◦

r = 10−3 cm η = 0.01 Poise

L = 10 cm T = 70 dyne cm−1.

(5a)

The output Poiseuille–Peiris–Tennakone speedsżtop at the top of the tube become

żtop = 0.16 cm s−1 for a = 3 cm (5b)

żtop = 0.18 cm s−1 for a = 20 cm. (5c)

Clearly, żtop increases monotonically with the immersion deptha. The background
developed in the above sections will be utilized in the actual theme of the present paper
discussed in the next section.

4. Rise in a short capillary and its application

It is convenient to discuss two cases separately.

4.1. Case A: when a portion of the capillary is above the free surface (L > a)

For a tube dipped as shown in figure 2 the liquid will start atz = 0 with initial speed
(2gH0)

1/2 and will go on rising in accordance with (3) until the meniscus reaches the
upper tip. Now, owing to the abrupt change of the geometry at the tip, several events start
happening together in the following manner. As, due to inertia, the liquid head overshoots
the tip the kinetic energy of the liquid is partially converted into the increased surface energy,
remembering that the free liquid head will tend to acquire an approximately spherical-
segment shape. The momentary change of the contact angle of the advancing liquid from
an acute to an obtuse value is consistent with the range permitted by the Gibbs inequality
(2c). Also, the solid–vapour interface disappears within the tube but reappears on the cross-
section of the tube acting horizontally. Furthermore, the overshot segment corresponds to
a metastable state because the surface has now acquired a reverse curvature [10] and hence
the excess internal pressure will tend to push the liquid back down the tube. In addition,
since all three forces, namely the surface tension, gravity, and viscous drag, have become
downward the kinetic energy of the column drastically decreases. Finally, the kinetic energy
(cf (4)) of whatsoever liquid remains within the tube will dissipate away through a couple
of oscillations to yield a final static rise given by

L = a + 2Tlv cosθf /rρg cosθf > 0 (6)
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whereθf is the final changed contact angle. Thisθf is still acute (though larger thanθ0) so
it can support the apparent weight of the risen column in the static situation (see figure 2)
in which the viscous force, of course, vanishes. Such aθf is also consistent with the Gibbs
inequality (2c).

Figure 2. The final static equilibrium configuration in the
case of a short capillary tube a portion of which protrudes
outside the free surface. The liquid rises up to a point
very close to the upper tip so the final contact angleθf
becomes large but still acute.

4.2. Case B: when the upper tip of the capillary is below the free surface (L < a)

To be specific, let us consider the case of a vessel whose bottom has developed a pin-hole
crack, immersed as shown in figure 3. The time-dependent motion of the liquid column
leading to an initial spilling of the liquid is essentially the same as described in the previous
case. Prior to achieving equilibrium the kinetic energy (cf (4)) of the liquid column is
dissipated away in overcoming the viscous dissipation and storing the extra surface energy
of the obtuse protrusion. These oscillations occur because of the change of the direction
of the surface tension force from upward to downward and vice versa as mentioned above.
Finally, the static configuration will be achieved with an obtuse contact angleθf so that
the surface tension pull (now acting downwards) can balance the upward thrust due to
buoyancy, yielding once again

L = a + 2Tlv cosθf /rρg cosθf < 0. (7)

Of course, an obtuse final contact angle is consistent with the physical fact that the internal
pressure developed owing to the convex surface is acting downwards. Furthermore, the
Gibbs inequality (2c) is again satisfied.

If a were increased by immersing the vessel further, the force of buoyancy would also
increase; hence to counter balance it the surface tension pull would have to be enhanced
by making θf more obtuse. The maximum depthamax up to which equilibrium can be
maintained without leakage would be such that the protrusion acquires a limiting contact
angleθf = (180◦ −φ)+ θ0 = (90+ θ0) as permitted by Gibbs inequality (2c). Hence, from
(7) we obtain the maximum immersion depth for non-leakage [9] as

amax = L + 2Tlv sinθ0/rρg. (8)

This corresponds to an unstable situation because if it were disturbed by any means such as
by immersing the vessel still further continuous leakage of water would start. In order to
illustrate the above ideas numerically, let us suppose that the vessel with a pin-hole crack is
floating in water characterized by the parameters of (5). Thenamax = 54 cm. In the end we
may remark that the value ofamax is an increasing function ofL andTlv but a decreasing
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Figure 3. The final equilibrium rise within the pin-hole crack in the bottom of a vessel floating
in water. The capillary tube is, therefore, lying wholly below the free surface. The meniscus
now protrudes out at the upper tip, maintaining an obtuse contact angle.

function of r, ρ, andg. These dependences may be kept in mind while designing the pores
as per requirements.
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